Package-Level Type Names (total 4, all are exported)
/* sort exporteds by: | */
Timetime.TimeTime.extint64 loc specifies the Location that should be used to
determine the minute, hour, month, day, and year
that correspond to this Time.
The nil location means UTC.
All UTC times are represented with loc==nil, never loc==&utcLoc. wall and ext encode the wall time seconds, wall time nanoseconds,
and optional monotonic clock reading in nanoseconds.
From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
The nanoseconds field is in the range [0, 999999999].
If the hasMonotonic bit is 0, then the 33-bit field must be zero
and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
unsigned wall seconds since Jan 1 year 1885, and ext holds a
signed 64-bit monotonic clock reading, nanoseconds since process start. Add returns the time t+d. AddDate returns the time corresponding to adding the
given number of years, months, and days to t.
For example, AddDate(-1, 2, 3) applied to January 1, 2011
returns March 4, 2010.
Note that dates are fundamentally coupled to timezones, and calendrical
periods like days don't have fixed durations. AddDate uses the Location of
the Time value to determine these durations. That means that the same
AddDate arguments can produce a different shift in absolute time depending on
the base Time value and its Location. For example, AddDate(0, 0, 1) applied
to 12:00 on March 27 always returns 12:00 on March 28. At some locations and
in some years this is a 24 hour shift. In others it's a 23 hour shift due to
daylight savings time transitions.
AddDate normalizes its result in the same way that Date does,
so, for example, adding one month to October 31 yields
December 1, the normalized form for November 31. After reports whether the time instant t is after u. AppendFormat is like [Time.Format] but appends the textual
representation to b and returns the extended buffer. Before reports whether the time instant t is before u. Clock returns the hour, minute, and second within the day specified by t. Compare compares the time instant t with u. If t is before u, it returns -1;
if t is after u, it returns +1; if they're the same, it returns 0. Date returns the year, month, and day in which t occurs. Day returns the day of the month specified by t. Equal reports whether t and u represent the same time instant.
Two times can be equal even if they are in different locations.
For example, 6:00 +0200 and 4:00 UTC are Equal.
See the documentation on the Time type for the pitfalls of using == with
Time values; most code should use Equal instead. Format returns a textual representation of the time value formatted according
to the layout defined by the argument. See the documentation for the
constant called [Layout] to see how to represent the layout format.
The executable example for [Time.Format] demonstrates the working
of the layout string in detail and is a good reference. GoString implements [fmt.GoStringer] and formats t to be printed in Go source
code. GobDecode implements the gob.GobDecoder interface. GobEncode implements the gob.GobEncoder interface. Hour returns the hour within the day specified by t, in the range [0, 23]. ISOWeek returns the ISO 8601 year and week number in which t occurs.
Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
of year n+1. In returns a copy of t representing the same time instant, but
with the copy's location information set to loc for display
purposes.
In panics if loc is nil. IsDST reports whether the time in the configured location is in Daylight Savings Time. IsZero reports whether t represents the zero time instant,
January 1, year 1, 00:00:00 UTC. Local returns t with the location set to local time. Location returns the time zone information associated with t. MarshalBinary implements the encoding.BinaryMarshaler interface.( Date) MarshalJSON() ([]byte, error) MarshalText implements the [encoding.TextMarshaler] interface.
The time is formatted in RFC 3339 format with sub-second precision.
If the timestamp cannot be represented as valid RFC 3339
(e.g., the year is out of range), then an error is reported. Minute returns the minute offset within the hour specified by t, in the range [0, 59]. Month returns the month of the year specified by t. Nanosecond returns the nanosecond offset within the second specified by t,
in the range [0, 999999999]. Round returns the result of rounding t to the nearest multiple of d (since the zero time).
The rounding behavior for halfway values is to round up.
If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged.
Round operates on the time as an absolute duration since the
zero time; it does not operate on the presentation form of the
time. Thus, Round(Hour) may return a time with a non-zero
minute, depending on the time's Location. Second returns the second offset within the minute specified by t, in the range [0, 59].( Date) String() string Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
value that can be stored in a [Duration], the maximum (or minimum) duration
will be returned.
To compute t-d for a duration d, use t.Add(-d). Truncate returns the result of rounding t down to a multiple of d (since the zero time).
If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged.
Truncate operates on the time as an absolute duration since the
zero time; it does not operate on the presentation form of the
time. Thus, Truncate(Hour) may return a time with a non-zero
minute, depending on the time's Location. UTC returns t with the location set to UTC. Unix returns t as a Unix time, the number of seconds elapsed
since January 1, 1970 UTC. The result does not depend on the
location associated with t.
Unix-like operating systems often record time as a 32-bit
count of seconds, but since the method here returns a 64-bit
value it is valid for billions of years into the past or future. UnixMicro returns t as a Unix time, the number of microseconds elapsed since
January 1, 1970 UTC. The result is undefined if the Unix time in
microseconds cannot be represented by an int64 (a date before year -290307 or
after year 294246). The result does not depend on the location associated
with t. UnixMilli returns t as a Unix time, the number of milliseconds elapsed since
January 1, 1970 UTC. The result is undefined if the Unix time in
milliseconds cannot be represented by an int64 (a date more than 292 million
years before or after 1970). The result does not depend on the
location associated with t. UnixNano returns t as a Unix time, the number of nanoseconds elapsed
since January 1, 1970 UTC. The result is undefined if the Unix time
in nanoseconds cannot be represented by an int64 (a date before the year
1678 or after 2262). Note that this means the result of calling UnixNano
on the zero Time is undefined. The result does not depend on the
location associated with t. UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.(*Date) UnmarshalJSON(data []byte) error(*Date) UnmarshalText(data []byte) error Weekday returns the day of the week specified by t. Year returns the year in which t occurs. YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
and [1,366] in leap years. Zone computes the time zone in effect at time t, returning the abbreviated
name of the zone (such as "CET") and its offset in seconds east of UTC. ZoneBounds returns the bounds of the time zone in effect at time t.
The zone begins at start and the next zone begins at end.
If the zone begins at the beginning of time, start will be returned as a zero Time.
If the zone goes on forever, end will be returned as a zero Time.
The Location of the returned times will be the same as t. abs returns the time t as an absolute time, adjusted by the zone offset.
It is called when computing a presentation property like Month or Hour. addSec adds d seconds to the time.( Date) appendFormat(b []byte, layout string) []byte( Date) appendFormatRFC3339(b []byte, nanos bool) []byte( Date) appendStrictRFC3339(b []byte) ([]byte, error) date computes the year, day of year, and when full=true,
the month and day in which t occurs. locabs is a combination of the Zone and abs methods,
extracting both return values from a single zone lookup. mono returns t's monotonic clock reading.
It returns 0 for a missing reading.
This function is used only for testing,
so it's OK that technically 0 is a valid
monotonic clock reading as well. nsec returns the time's nanoseconds. sec returns the time's seconds since Jan 1 year 1. setLoc sets the location associated with the time. setMono sets the monotonic clock reading in t.
If t cannot hold a monotonic clock reading,
because its wall time is too large,
setMono is a no-op. stripMono strips the monotonic clock reading in t. unixSec returns the time's seconds since Jan 1 1970 (Unix time).
Date : encoding.BinaryMarshaler
*Date : encoding.BinaryUnmarshaler
Date : encoding.TextMarshaler
*Date : encoding.TextUnmarshaler
Date : encoding/json.Marshaler
*Date : encoding/json.Unmarshaler
Date : fmt.GoStringer
Date : fmt.Stringer
Date : context.stringer
*Date : crypto/hmac.marshalable
Date : runtime.stringer
Email represents an email address.
It is a string type that must pass regex validation before being marshalled
to JSON or unmarshalled from JSON.( Email) MarshalJSON() ([]byte, error)(*Email) UnmarshalJSON(data []byte) error
Email : encoding/json.Marshaler
*Email : encoding/json.Unmarshaler
The pages are generated with Goldsv0.7.6. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds.